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1. INTRODUCTION 101'/ 4 0

Composition B is a widely used military explosive consisting of a 60/40 mixture of RDX
(hexahydrotrinitro-s-triazine) and TNT (trinitrotoluene). Ordnance is filled by a casting
process in which Composition B is heated above the melting point of TNT (820C), poured
into the shell, and allowed to cool and solidify. During this process the heated mixture is

essentially a suspension of solid RDX particles in liquid TNT, and sedimentation of RDX S 0
can occur in the shell during cooling and solidification of the TNT. The sedimentation will
lead to localized regions of higher RDX content and higher sensitivity, because RDX is nore
sensitive to initiation than TNT.

This paper describes the application of a Molecular Dynamics (MD) computer simulation
technique which was used to study the sedimentation process. We considered N macroscopic 0 0
size spherical particles in a viscous fluid subject to gravity and interparticle forces. Calcu-
lations were performed for three different particle sizes for both monomodal and bimodal
particle size distributions. The monomodal results showed a size dependent packing effect,
while with bimodal distributions fractionation was found to occur, giving rise to a layer of
smaller particles on the top of the sediment. •

The CPU time for the initial version of our code varied as N2 because of the nearest

neighbours problem. This limited the maximum number of particles in our simulations to
slightly more than 200, and so later versions of the c. ie included a Monotonic Lagrangian Grid
(MLG) algorithm (Boris, 1986) to keep track of nearest neighbour relationships and reduce
the computational time to an order N dependence. We briefly describe the implementation 0 •
of the MLG into our sedimentation code and the improvement in performance which was
obtained.

2. MOLECULAR DYNAMICS MODEL

In MD calculations the forces on all particles are calculated and the particles are moved •
according to Newton's equations of motion. The initial state of the sedimenting system
consists of N particles dispersed homogeneously in a viscous medium and subject to gravity
and interparticle forces. The final state consists of a completely sedimented system in which
none of the particles has any significant motion.

The important forces in a sedimentation process -re viscosity, gravity, interparticle forces

and particle/floor forces. The magnitude of the viscous force on a spherical particle is given
by

Fiv"' = -67rqrivi (1)

where 7 is the liquid phase viscosity, ri is the radius of particle i and vi the velocity. This

force acts in a direction opposite to the direction of motion of the particle. 0

0 * S
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f < 1014 Particle Radius (prm)

(J) 30 50 100
30 0.473 1.50 10.4
50 1.50 3.65 18.5 0 0
100 10.4 18.5 58.4

Table 1: e values used in the interparticle force calculation.

Sx 10, Particle Radius ( m ) 0 0

(M) 30 50 100
30 14.7 19.6 31.9
50 19.6 24.5 36.8
100 31.9 36.8 49.0

Table 2: a values used in the interparticle force calculation.

Rae"us
(tm) 30 50 100 0 0
K 3.54 x 10-68 1.25 x 10-6 4  8.22 x 10-60

(N.m13 )

Table 3: K values used in the particle/floor force calculation.

The interparticle forces describe the interaction between particles. Here, the particles
are assumed to be spherical "soft" spheres. A soft sphere model is necessary to overcome
numerical stability problems as well as reducing particle overlap. A truncated Lennard-Jones
12-6 type potential proved to be the most suitable and the force is given by

*/ 12o4? 6oa,
Fij = 4cij I• -- _-- d() 2)

where rij is the interparticle distance, cij and aij are constants for pair (ij) and a is a unit
vector along the interparticle line. •

A particle-floor force is needed between the particles and the bottom of the container.
The form of this force was taken to be

Fr K(3)I fr!orl3(3

where rti*°° is the distance between particle i and the bottom of the container, Ki is a

constant for particle type i and i is a unit vector in the Z direction. The form of this
potential is basically the repulsive part of Equation (2) and was chosen for consistency, as
well as its success in providing an adequate description of the bottom boundary.

Values of eij and aij can be obtained in the literature for atoms and molecules. However,
values for macroscopic particles like those used in this study are not readily available. The
values used here have been chosen somewhat arbitrarily but satisfy the required conditions
well, i.e. the particles behave as soft spheres. K values are also assigned in a similar fashion.
Tables 1, 2 and 3 list values of eil, aij and Ki used in this work. The results we obtained
were found not to be sensitive to the values used. •

i . . . . . . . . . .. . i - . . i.. . . I]l . . . .. . . _ . . . . . . .. . . .. .. * 0 . ..
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The effect of Brownian motion on the sedimenting particles has not been included as the
particle sizes considered here are large enough for it to be neglected. A simple criterion for
the neglect of Brownian motion is that the particle Piclet number be much larger than unity •
(Bossis and Brady, 1984). For the system considered here this will be the case provided the
particle number is greater than ljrm. The smallest particle radius considered here is 30Am,
and so Brownian motion has not been included in the calculation.

The total force on a particle is therefore given by

N 0 •

Fi = mini = Z Fa, + mig - 6rw,•rivi + F("'00 (4)

where N is the number of particles, vi is the velocity of particle i and aj the acceleration.
We integrate the equations of motion using the Verlet equations in the following form

v,(t) = I-- (r,(t + At) - r,(t - At)) (5)
2At

r,(t + At) = 2r,(t) - r,(t - At) + ai(t)At 2  (6)

To calculate ri(t + At), ai(t) must be known, and to calculate ai(t) from Equation (4) we
need vi(t) which, in turn, is dependent on ri(t + At). This difficulty can be overcome as
follows; Equation (4) can be written (in one dimension) as

dr" -Ai-a in 
(7)

where

1 (N I~~o~

and

,,• = 6rqri(9) 0 0
Mi

Equations (7) and (8) can then be used to simplify Equation (5) to the following form

niz n n *- 1  AtI+ ttj) I ((0
dt At 2 AI/ + 2- (10)

Equation (10) can now be evaluated using only zM' and Xzn- 1. is approximated via:

S odz 1 °
Mi = X + d-'T-At(11)

Each time step integration then cycles through the following sequence: evaluate A from
Equation (8), solve Equation (10) to give the particle velocities, solve Equation (7) to give
the particle accelerations, then solve Equation (6) to find position at the new time step. In
this scheme, the force evaluation and solution of the equations of motion are interleaved to
overcome the velocity dependence of the force.
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Figure 1. Top surface of the sediment approximated by a grid of squares.

Initially, the particles are placed randomly within a rectangular box and assigned random
velocities. Periodic boundary conditions are applied in the X and Y directions, and gravity 0
acts in the negative Z direction. The number of particles in the simulations varied from
N=125 to N=1000, and a typical valhe for the time step was 200ps. Complete sedimentation
usually occured within approximately 12,000 to 14,000 cycles. The initial version of the code
used a lookup table to evaluate Equation (2), but the MLG version calculated the force at
each time step. 0 0 0

In order to compare results for different particle size distributions a method for calculat-
ing the sediment volume was required. Given the box dimensions and the particle coordinates
and radii, the volume can be calculated by evaluating the volume under the top surface of
the particles, and this can be defined by lowering a grid of small squares onto the sediment
until all of the squares have intersected a particle. The volume is then the sum of the volumes 0 •
under every square. Figure (1) shows a typical picture of the top surface of a sediment which
has been approximated using this method.

The initial version of the program was designed to run on a VAX 8700 computer and
practical limitations restricted the number of particles in the simulation to around N=200
because the CPU time varied as N 2 . This is a common problem in MD simulations and 0 0

arises because in a system of N particles randomly distributed in space the motion of any
one particle is in principle determined by the remaining N-I other particles. In practice
however the particle will be influenced significantly by only a relatively small number of
nearby particles, defined to be the particles "nearest neighbours", and finding these nearest
neighbours in an efficient manner is a central part of any MD simulation. •

We redesigned our code to overcome this problem by implementing the MLG algorithm to
track near neighbour relationships. The MLG is a data structure in which adjacent particles
in space have close grid indices. The data structure is arranged so that a particle's nearest
neighbours are readily identified, but without the need to continually calculate the distance
to each of the other N-1 particles (an order N operation). The computational cost of the 0 0

scheme scales as N, and the algorithm is ideally suited to vectorization because it uses data
from contiguous memory locations. The MLG has previously been used for a variety of MD
simulations of atomic and molecular systems (Lambrakos et al, 1989a,b), but this is the first

time it has been applied to macroscopic size particles in a sedimenting system.
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Figure 2a. Probability of finding a particle as a function of
height above the floor of the container for the 30/501m simulation.

3. RESULTS AND DISCUSSION 0 * 0

Initial calculations. were performed for suspensions in which all particles had the same radius.
Three particle sizes were investigated; r=30, 50 and 100pim, for N=125 or 216. In order to ob-
tain statistically meaningful results six replicate calculations were performed for each radius,
the only difference between the calculations being in the starting positions and velocities. A
relative density p,., defined as the ratio of sediment density to particle material density, was 0 0
calculated from the averaged results for each radius value.

If the sedimented material had sufficient time to adjust to an optimum close packed
structure we would find p, = 0.74, independent of particle sise, whereas the simulations gave
p, = 0.72, 0.70, 0.68 for particle radius values of 30, 50, and 100pm respectively. Thus the
packing density was found to be particle sise dependent, with an increase in particle size 0 0
giving a decrease in particle density.

One possible explanation for this lies in the terminal velocities of the particles. By
considering the free fall of a particle in the suspension (free fall here means that there are no
interparticle or particle/floor forces on the particle) it can be shown that the terminal velocity
of a particle is proportional to the square of the particle radius. Hence the smaller particles 0 0
have a slower terminal velocity and therefore have more time to rearrange and adopt a more
efficient structure than the larger particles.

Three different bimodal particle size distributions were investigated; 30/50, 50/100, and
30/100pm mixes. With bimodal distributions there is the possibility of fractionation occuring
during sedimentation, and therefore plots of the probability of locating a particle centre as a 0 0
function of height (in the s direction) were obtained. These are shown in Figure (2).

A common feature of these plots is a pair of well defined, sharp peaks at low heights. For
example, the 30/501Am plot (Figure (2a)) has a sharp peak at 26#m for the 301&m particles
and another at 46#m for the 50p&m particles. These peaks correspond to particles in contact
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Figure 2b. Probability of finding a particle asu a function of
height above the floor of the container for the 5O/lOO1sm simmulation.
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Figure 2b. Probability of finding a particle as a function of
height above the floor of the container for the 30/lO00m simulation.
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Figure 3. CPU time for 100 cycles versus

total number of particles in the simulation.
* 0

with the floor of the container. The fact that these peaks occur at heights slightly lower than
the corresponding particle radius indicate a small amount of overlap between the floor and
the particles (i.e. squashing).

The tendency for the smaller particies to settle after the larger particles is shown by the
plots. For the 30/50pm simulation the 30pm probability curve extends out to 360pm whereas * * *
the 50p&m curve only goes out to 3101m. Thus, beyond 310p•m there is zero probability of
finding a 50pm particle and only 30pm particles will be found in the range 310pm to 360prm,
i.e. a layer of 30p;m particles will be formed on the top of the sediment. Similarly, for the
50/100pm simulation (Figure (2b)) 100/pm particles are not found above 578oum and only
501om particles are found between 5781&m and 623pm. The 30/O00/pm simulation (Figure 0
(2c)) is not as clear cut since the probability of finding a 100pm particle above 470pm is not
zero, but since it is very small we can take 470prm as the upper limit for the 100prm particles
here. Only 30&m particles will be found between 470/sm and 5301&m.

The bimodal results were obtained using either N=216 or N=512, with the larger number
of particles being run on the MLG version of the code. We also ran a series of simulations
using up to 1000 particles to check the order N scaling of the MLG on both the VAX 8700 and
a Cray X-MP. Plots of CPU time for 100 cycles versus total number of particles are shown in
Figure (3) for both the original version of the code and the MLG version on both the VAX
and the Cray.

The original code shows the N 2 dependency (gradient equals 1.98), while the MLG
code on the VAX shows a linear dependence on N (gradient equals 1.08), as expected. It is
interesting to note that the MLG code on the VAX takes longer to run 100 cycles than does
the original version of the code when small particle numbers are used. This is not unexpected
because of the additional initial computational overheads associated with the MLG, and the
repeated use of Equation (2) instead of a lookup table. Crossover occurs around N=500, and 0
for N=1000 the MLG version is more than twice as fast.

The MLG code when run on the Cray also shows a linear dependence on N (gradient
equals 0.97) and considerably reduced CPU times. The speedup is only marginally better
than that due to the faster clock rate on the Cray however, indicating that little vectorization
is occuring, and this is due to the relatively small number of particles we are using. In an

* 0

* . ...0 .•
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MLG code the N particles are specified by assigning values to three numbers: NX, NY, and
NZ, where N = NX x NY x NZ. In a "regular" MLG structure the computationally intensive
parts of the code are contained within a nested set of DO loops over indices i, j, and k, which 0
vary between 1 and NX, NY, and NZ respectively. For 1000 particles we have NX = NY = 0 0
NZ =10, which means that the innermost loop has a count of only 10, which is far too short
for the increase in speed due to the pipeline architecture to be effective.
4. CONCLUSION

For monomodal particle size distributions the MD results show that the packing density is 9 0
particle size dependent, with an increase in particle radius giving a decrease in sediment
density. For bimodal distributions fractionation was found to occur and a layer of smaller
particles formed on the top of the sediment. This type of inhomogeneity has important con-
sequences for the sensitivity and mechanical properties of an explosive where sedimentation
may have occurred during production. Use of the regular MLG algorithm reduced the N2 , 0
dependency on CPU time to order N, but further improvements in efficiency require the use
of either larger particle numbers or a "skew-periodic" MLG on a vector compiler (Lambrakos
and Boris, 1987), or the application of the regular MLG on a massively parallel computer
(Phillips, 1991).
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